If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10w^2+51w+56=0
a = 10; b = 51; c = +56;
Δ = b2-4ac
Δ = 512-4·10·56
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-19}{2*10}=\frac{-70}{20} =-3+1/2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+19}{2*10}=\frac{-32}{20} =-1+3/5 $
| 6c+7=67 | | X+18y=16 | | 50=17+y | | 10+8(2x+4)=81x | | 2-2x=2x-2 | | X+18y=-16 | | 3=3(x-7)+x | | .5x+3=5/8x-1 | | 5x–7=–2(3–8x)+1 | | 3=3(x-7)+3 | | -77=7(g-81) | | 18d^2-3d-45=0 | | 2(10x-20)-2=60 | | (3x+7)+(x+5)=180 | | 4t+19=75 | | q/4-3=2 | | 9.2n+3.2=16.3 | | -20=-8x+4x | | z/7+31=34 | | (x+5)(x−7)=0 | | 1−12u-8=-8 | | k/5+27=34 | | 18x+36=0 | | 11x-3=2(5x+6) | | 3x-0.7=2.8 | | -5=2(x+3)-4x | | 2/3(6x+9=-5x+4 | | 5=t+16/7 | | 7x+23=60 | | Px−43=−42x+Q | | 18-24+x=12+6 | | 10g+11=41 |